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Simulation of natural convection effects on succinonitrile crystals

Robert Tönhardt and Gustav Amberg
Department of Mechanics, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden

~Received 3 June 1999!

A numerical study of the effect of natural convection on the growth of succinonitrile crystals has been
performed. All simulations are two-dimensional phase-field computations using an adaptive finite element
method. The undercooling has been varied between 1.92 to 0.12 K, which is within the range used in experi-
ments. The thermal natural convection has minor effects at 1.92 K, but the influence increases with decreasing
undercooling, due to the fact that the size of the crystal increases. The simulation results show a decrease of the
growth Peclet number with decreasing undercooling that is very similar to that observed in terrestrial experi-
ments. Also, the simulation results for the orientation effect of the gravity vector agree qualitatively with
experiments.

PACS number~s!: 44.25.1f, 02.60.Cb, 02.70.Dh, 47.15.Cb
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I. INTRODUCTION

When a nucleus solidifies in an undercooled melt,
size, morphology, growth rate, etc. may be strongly affec
by any motion in the melt. This motion will thus be impo
tant for the properties of the finished material. Such m
flows may be due, for instance, to imposed external stirri
flow induced by solidification shrinkage, or a large sca
convection in the bulk melt due to imposed temperature g
dients. Another cause, that will be investigated here, is
natural convection that may result from the release of la
heat from the growing crystal. Considering an undercoo
melt with dendritic solidification from an isolated nucleu
the adjacent melt is heated by the released latent heat,
the corresponding change in density may cause gravitati
convection. The ensuing melt flow may alter the local h
transfer around the tip, and this may have large effects on
growth of the dendrite.

In the last decades there has been some interest in na
convection effects on the morphology and growth of in
vidual dendrites. A recent review is available in Ref.@1#.
One reason for this interest is that natural convection is
quently suspected to influence experimental results@2–6#.
For pure succinonitrile~SCN! there are quantitative measur
ments@2–4,7,8# of the velocities and radii of the tips of th
main stems. Experimental and theoretical work has sho
that the effects of natural convection increase at low und
cooling, due to the increasing size of the dendrites@9#. One
indication of this is that when terrestrial measurements
compared to theories that disregard convection, such as
classical Ivantsov theory@10#, the agreement is good only fo
a small interval of undercooling. For undercooling abo
4–5 K, there seems to be interface kinetic effects.
growth below this undercooling, but above 2 K, the Ivants
solution agrees well with experiments. Moreover, t
Ivantsov solution, in combination with a constant value
the stability parameter, gives a theoretical tip velocity and
radius that are almost the same as those measured in te
trial experiments. Below 2 K the terrestrial growth again
deviates from this theoretical operation point of the tip. U
der terrestrial conditions it has also been observed that
dendritic growth depends on the direction of the gravitatio
PRE 621063-651X/2000/62~1!/828~9!/$15.00
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field. The side branches close to the tip of the dendrite
the operation point of the tip change depending on
growth direction relative to gravity. Also, it has been foun
that the operating point of the tip of a dendrite is different
terrestrial and microgravity experiments. It has also be
shown that the volume-change at the solid-liquid interfa
which results in a Stefan wind has only a minor effect on
operating point of the tip@11,12#.

In a microgravity environment it was observed@3,8# that
some nondiffusive phenomena may affect the growth at h
undercooling, which is probably a result of the kinetic effec
at the phase-interface. Ananth and Gill@13# suggested tha
the reason for the overprediction of the growth velocity
the isothermal dendrite theory, for undercooling above 0
K, is due to a Stefan wind and the Gibbs-Thompson effe
Also, at lower undercooling, the experimental results devi
from Ivantsov’s transport theory@10#.

A modification by Pineset al. @11# is attributed to the
finite size of the experimental chamber. The proximity of t
walls is included by looking at the distance between the
and the closest chamber wall. It was concluded@11,14# that
the finite size of the container may be of importance
micro-gravity. Both of these new theories agree with Glick
man’s isothermal dendritic growth experiments~IDGE!.
Tennenhouseet al. @15# also compared the new theories wi
the IDGE experimental results, and it seems that the w
proximity effect is the main reason for the discrepancy b
tween the theory and the microgravity experiments at l
undercooling. It should be noted that the use of Ivantso
transport solution is a weakness, and partly responsible
differences between theory and experiments.

The case of immediate interest in this paper, natural c
vection, was studied theoretically primarily by asympto
methods. Gill and co-workers investigated the effects
forced and natural convection on dendrite growth in a se
of papers@7,9,13,16,17#, using an approximation that is vali
close to the dendrite tip. Ananth and Gill@9# used this to
solve the Navier-Stokes equations with thermal buoyancy
a shape preserving paraboloidal dendrite tip, and compu
for instance, the growth Peclet number as a function of
dercooling. They showed, somewhat unexpectedly, that n
ral convection becomes important for sufficiently small u
dercooling, and that the tip radius of the dendrite is t
828 ©2000 The American Physical Society
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PRE 62 829SIMULATION OF NATURAL CONVECTION EFFECTS ON . . .
characteristic length scale for the thermal convection. C
right and Davis@18# used a different approximation, whic
assumes, a small buoyancy, but is valid in a larger reg
around the tip. They studied, among other things, the in
ence of the Prandtl number. Sekerkaet al. @19# introduced
the natural convection fluid flow by replacing the dendr
array by an isothermal sphere that encloses the dendrites
then treating the case of the sphere surrounded by cold m
The stagnant thermal boundary layer around the spher
then used to modify the Nusselt number for the tip of
dendrite.

In this paper the phase-field method proposed by Ka
and Rappel@20,21# is used to track the solid-liquid interface
In this method the parameters can be adjusted to give a
trary interface kinetics. Moreover, the interface can be rat
wide, and the method still gives accurate results. T
method was used by many researchers@22–24#. Provatas
et al. @23#, and Braun and Murray@25#, used the finite ele-
ment method~FEM! with adaptivity. Provataset al. @23#
have performed, among other things, a long time comp
tion of thermal growth of a free two-dimensional~2D! den-
drite for the dimensionless undercooling of 0.1. Provo
et al. @26# computed 2D dendrites down to an undercooli
of 0.05, and investigated time dependent growth at low
dercooling.

Phase-field simulations with convection were perform
only very recently. Tonget al. @22# made computations with
forced fluid flow toward a free thermal dendrite. Convecti
effects on a dendrite growing into a shear flow were stud
by the authors@27,28#. However, to our knowledge there a
no published phase-field simulations of natural convect
effects on dendritic growth.

The purpose of the present paper is to study how nat
convection affects the evolution of a crystal. We have sim
lated growth of a thermal dendrite of pure SCN in two d
mensions. In the following, the mathematical problem is f
mulated in Sec. II, the numerical aspects are discusse
Sec. III, and the results are presented in Sec. IV.

II. MATHEMATICAL FORMULATION

A rectangular chamber filled with a pure singl
component melt is considered. The melting temperature
the material isTm , and it is initially at a uniform temperatur
T` . The melt is undercooled, i.e.,Tm.T` . The walls of the
chamber are maintained at a constant temperatureT` . In the
center of the chamber a nucleus is placed, and it is assu
to be held fixed during the subsequent growth. Initially t
nucleus is assumed to be circular with a nondimensiona
dius of 5, and to be at the melting temperatureTm .

A sketch of the computational domain is shown in Fig.
It represents the right half of the chamber. On the left bou
ary of the domain, where the nucleus is positioned, sym
try boundary conditions are applied, as indicated in the
ure. It is thus assumed in the simulations that the nucl
grows symmetrically with respect to the vertical centerlin
On the right, top, and bottom boundaries, solid isotherm
walls are assumed, as indicated.

The dimensionless time, spatial coordinates, temperat
flow velocity, and pressure are denoted byt, (x,y), u, ū, and
p, respectively. The length and time have been scaled wi
n-
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reference lengthW, and the thermal diffusion timeW2/a,
respectively, wherea is the thermal diffusivity. Velocities
have been scaled with the diffusion velocitya/W. The pres-
sure has been scaled withr0an0 /W2, wherer0 andn0 are
the reference density and viscosity atT5Tm , respectively.
The nondimensional temperature has been introducedu
5(T2Tm)/(Tm2T`), whereT is the dimensional tempera
ture.

All the material properties are assumed to be the sam
both the liquid and solid phases, except for the density. T
solid phase has a constant densityr0, while the density of the
fluid, r, varies with temperature as

r5r0@12b~T2T`!#. ~1!

Here b is the thermal expansion coefficient. The releva
material parameters that were used ib this study are liste
Table I.

In both the solid and liquid phases the energy equatio
written as

]u

]t
1ū•¹u5

1

2D

]f

]t
1¹2u. ~2!

Here D5(Tm2T`)/(L/cp) is the dimensionless undercoo
ing. L is the latent heat, andcp is the specific heat of the
material. Hence Eq.~2! models the heat equation in the sol
(ū50) and liquid phases. It also models the release of la
heat at the solid-liquid interface. This equation was deriv
phenomenologically in Refs.@22,27#.

In formulating the equations for the melt flow, the Bous
inesq approximation has been used, as is often done in
transfer research. This amounts to neglecting the den
variations with temperature everywhere except in the gra

FIG. 1. A sketch of the domain of computation with bounda
conditions. The contour represents the solid-liquid interface of
crystal. The anglez0 denotes the angle between the direction
gravity and the preferred growth direction.u andv are the velocity
components in thex andy directions respectively, andVn is the tip
speed.
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TABLE I. The material properties of SCN.

Symbols Meaning Value

Tm Melting temperature 331.23 K
cp Specific heat 1.99 J/(cm3 K)
L Latent heat of fusion 47.8 J/cm3

a Diffusivity 1.1231023 cm2/s
k Conductivity 2.2331023 J/(cm s K)
r0 Density 1.0 g/cm3

b Thermal expansion coefficient 8.131024 K21

s0 Surface energy 8.931027 J/cm2

n0 Kinematic viscosity 0.026 cm2/s
e Degree of anisotropy 0.015
t
a
t
q

6

ti
io

a
xi

te

m
n

ity
te
li
tly
h
i
e

he

r
n

dd-
on
han

ely
the

ld

nd
n-
k-

ave
of
ters

id

he
tion

en-

l

force term in the momentum balance, and also neglecting
temperature variations of other material properties. It c
easily be shown that this is a consistent approximation tha
valid for small relative density differences, which, using E
~1!, can be estimated here to beb(Tm2T`). With represen-
tative numbers (Tm2T`,2 K!, this is always less than 1.
31023

Due to the Boussinesq approximation, and the assump
of equal densities of melt and solid, the continuity equat
can be written as

¹•ū50. ~3!

The fluid flow is governed by the Navier-Stokes equ
tions, in the following form, where the Boussinesq appro
mation has been used:

1

Pr
S ]ū

]t
1ū•¹ūD 5¹p1¹•„f n@¹ū1~¹ū!* #…1Rau ŷ.

~4!

Here Pr5n0 /a is the Prandtl number, the asterisk deno
the transpose operator, and Ra5gbW3(Tm2T`)/(an0) is
the Rayleigh number.

With the assumption that the melt and solid have the sa
density, the atoms are at rest in the solid, and there is
volume flow at the interface. Therefore, the fluid veloc
must become zero when approaching the solid-liquid in
face, as with the no slip condition usually applied at a so
surface. This boundary condition can not be applied direc
since the solid-liquid interface is tracked implicitly throug
the phase-field variable. Instead the no slip condition
implemented by explicitly setting the velocity to zero in th
nodes of the computational mesh, with a valuef>0.5, and
by making the viscosity a rapidly increasing function of t
phase fieldf.

This viscosity increase is introduced via the functionf n of
the phase-field variablef that appears in Eq.~4!. We have
used the following definition off n :

f n5H 1 f,20.6

1110 ~f10.6!2 otherwise.
~5!

The simulation result is rather insensitive to variation off n

and f n[1 gives only a small decrease in accuracy.
he
n
is
.

on
n

-
-

s

e
o

r-
d
,

s

Dieperset al. @29#, and Tonget al. @22# suggested anothe
way to implement the no slip condition on the solidificatio
interface. They modified the Navier-Stokes equation by a
ing a volumetric shear dissipation term, which is switched
in the solid region. They also made this more accurate t
the method used here. However, since the mesh is extrem
fine close to the interface, we have been satisfied with
above.

The solid-liquid interface is tracked by the phase-fie
equation

tw2
]f

]t
5@f2Dlu~12f2!#~12f2!1¹•~w2¹f!

2
]

]x S w
]w

]z

]f

]y D1
]

]y S w
]w

]z

]f

]x D , ~6!

wheret andl are constants chosen according to Karma a
Rappel@20,21#, to impose the modified Gibbs-Thomson co
dition. The solid-liquid interface has a dimensionless thic
ness of order unity, but the values oft andl depend on the
length scale W.

The pure metal used in the simulations is assumed to h
a body-centered cubic lattice, with a fourfold anisotropy
the surface energy at the solidification interface. This en
the phase-field equation~6! via the functionw, which is cho-
sen here as

w511e cos@4~z2z0!#, ~7!

wherez is the angle between the normal of the solid-liqu
interface and the vertical direction, ande is the degree of
anisotropy in the surface energy.

In the simulations it is assumed that the lattice of t
nucleus has an arbitrary orientation, and that this orienta
is controlled by the parameterz0. This results in the situation
that, without any flow, one of the main branches would ev
tually grow in the direction given byz0, as shown in Fig. 1,
wherez0545°. The anglez is calculated using the spatia
derivatives off, according to:

z5arctanS ]f

]y Y ]f

]x D . ~8!
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III. NUMERICAL METHOD

The numerical method employed in the present pape
the same as that in Refs.@27,28#, where more details were
reported. The addition of the buoyancy term in the mom
tum equations do not add any fundamentally new numer
difficulties. We will thus discuss numerical issues on
briefly.

The main features of our numerical strategy is that we
a Galerkin formulation of the finite element method, wi
piecewise linear base functions and unstructured meshe
triangular elements. The spatial resolution of the me
changes adaptively during the computation to obtain an
curate solution with a minimal number of elements. T
adaptivity in the present paper is accomplished by makin
coarse initial mesh and then adaptively splitting or merg
the elements according to an error indicator.

A rather large domain was used to reduce the influenc
the walls. The same dimensionless domain size was use
all cases. It extends between 0 to 60000 in thex direction,
and 260000 to 60000 in they direction, and the finest an
coarsest resolutions are about 0.45 and 5000, respective

The reference lengthW was chosen in order to reflect th
tip length scales, in such a way that the nondimensiona
radius should be around 12. Consequently it is taken dif
ently depending on the undercooling. In Sec. IV we w
discuss five different values of the nondimensional und
cooling, D50.08, 0.04, 0.02, 0.01, and 0.005. The cor
sponding values for the reference length areW5140.8d0 ,
500d0 , 1000d0 , 1666.66d0, and 3333.33d0, whered0 is the
capillary lengthd05cps0Tm /L2.

A typical element distribution consists of about 1500
elements and 75000 nodes. Most of the elements resolve
interface region; therefore, the number of elements
nodes scale with the arclength of the solid-liquid interface
all times. This mesh corresponds to the computation w
D50.02, also shown in Fig. 4~b! and it took about 300 CPU
hours on a CRAY J932~1 CPU!. The corresponding cas
without convection needs about half of this CPU time.

To solve the Navier-Stokes system of equations, a sch
proposed by Greshoet al. @30# was used. In accordance wit
this we employ pressure splitting and a streamline-upw
Petrov-Galerkin treatment of convective terms. The d
cretized systems of equations were solved using conju
gradients orGMRES, as appropriate. Diffusive terms wer
treated implicitly. For the low undercooling cases (D
<0.02), the convective terms were also implicit.

The Navier-Stokes solver has been validated, among o
test cases, for flow past a circular cylinder, where the co
puted wake length and position of wake center were co
pared with those by Fornberg@31# for Re5102200. In these
tests the cylinder was represented by the use of a presc
phase field, in order to test the implementation of the no
condition on the crystal. The seemingly crude method
increasing viscosity, as given in Eq.~5!, was found to be
quite adequate. This is understandable, since the flow fi
are quite viscous here, and thus vary over the length sca
the size of the crystal, while the thin region around the
terface is extremely well resolved. More details were giv
in Refs.@27,28#.

The time stepdt is controlled by the inequalitiesdtVf
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<0.001 anddt<5, whereVf is the maximum normal spee
of the interface. These criteria result such that when the t
step is decreased by a factor of 10 for a case withD50.08,
the relative difference in position and velocity of the inte
face caused by the change in time step is never larger
1% ~for time <43105). For a typical run, the time step i
initially 1024; it then increases slowly, with less tha
<0.05% per time step.

To validate our code and adjust the error indicator
compared our simulations with published simulations. F
the convection was turned off, and we made a compari
with the results by Karma and Rappel@20# and Provatas@32#.
For D50.25,0.45, and 0.55 our results agree, within a f
percent relative error. We have concluded that the radiu
the tip, R, should be at least around seven length scalesW,
and the resolution should be 0.44 or finer to obtain an ac
racy within a few percent. In the simulations presented
low, the length scales were selected to giveR>12W.

At undercooling below 0.25 we did not have access
reference solutions to compare with, but our experience fr
using different interface widths, meshes, etc. is consis
with the rule that the radius of curvature should not be l
than approximately 12 interface widths. The requirement t
the radius of curvature should be larger than the interf
width also seems to be the most restrictive of the four c
ditions given by Karma and Rappel@20# for the validity of
their second order accurate version of the phase-field e
tions.

In the related Hele-Shaw cell problem, Folchet al.
@33,34# found that the accuracy of the growth of linear inst
bilities was affected by the capillary length scale, since
spontaneous wavelength scales with the capillary length.
critical wavelength, however, also increases with decreas
undercooling, so that, despite the seemingly very large ra
W/d0 that are used here, the critical wavelengths are actu
resolved. Indeed, the essence of the marginal stability the
is that the tip radius should be comparable to the criti
wavelength; i.e., if the tip radius is resolved, then the criti
wavelength is also resolved.

The implementation of the mathematical problem w
done by using and developing code generation tools that
tomatically create a FEM code from a symbolic high lev
representation of the partial differential equations@35#. This
makes it possible to handle the complicated mathemat
models that are used here in an intuitive manner, and gre
reduces the work required for implementing different mod
and formulations.

IV. RESULTS

Five different values of the dimensionless undercool
— D, 0.08, 0.04, 0.02, 0.01, and 0.005 — have been inv
tigated. This corresponds to values of the undercooling
tween 1.92 and 0.12 K, which is in the range of experimen

Figure 2 shows the flow field around the crystal forD
50.02, at a nondimensional time 1.643106. The reference
length scale here isW51000d0. Note that only a small frac-
tion of the nodal velocities are shown. Figure 2~b! shows the
flow field in the vicinity of the crystal. The flow is clearly a
upward natural convection, driven by the release of lat
heat as the crystal grows. Figure 2~a! shows the flow field in
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the entire domain. The flow is directed toward the crys
from below and from the sides. The fluid that is heated n
the crystal forms a plume, which rises vertically above
crystal.

The nominal Rayleigh number Ra, based on the refere
length W, has the value 2.2431027. A more representative
Rayleigh number is obtained by basing it on the dendrite a
length l ~nondimensional! instead. For this case this give
using the length of the downward growing arml 5500, Ral
5 l 3Ra527.8. This is consistent with the convective flo
pattern that we see. With this low Ra, and also for the rat
large Pr used here, the flow is quite viscous, and there is
distinct fluid flow boundary layer. The upward flow exten

FIG. 2. Flow field around a growing crystal.~a! Entire domain.
~b! Close up around the crystal.
l
r

e

ce

m

r
o

to distances from the crystal that are significantly larger th
the dendrite arm length.

The rising plume above the crystal eventually reaches
top of the container, and will start to build up a stratificatio
However, this has not yet happened at the time shown in
2. The plume is still evolving, and the heated fluid has o
reached a certain height, roughly coinciding with the cen
of the vortex seen in Fig. 2~b! ~around height 20000!.

The fluid in the plume continues to accelerate above
crystal, giving a flow velocity which is maximal on the cen
terline far above the crystal. In Fig. 2~a! the maximum fluid
velocity is 0.055, while the growth velocity of the downwa
growing branch is 0.00029. This implies a fluid velocity th
is almost 190 times faster than the growth velocity, but
should be remembered that the fluid velocity is much low
at the tip of the downward growing branch.

Figure 3 shows the thermal field corresponding to
flow fields in Fig. 2. The temperature has returned to
undisturbed initial value at a distance from the crystal wh
is approximately the overall crystal size. This is consist
with the small value of Ral , but the isotherms also revea
clear convective effects. Above the crystal the beginning
the thermal plume is visible. Comparing with the flow fie
in Fig. 2, it is evident that the velocity disturbance reach
much further from the crystal than the temperature dist
bance. This is to be expected in any high Prandtl num
natural convection flow.

The isotherms reveal that the heat flux is increased at
tip of the downward growing branch, while it is decreased
the upward growing branch. The growth Peclet number
defined asP5VR/2, whereV andR are the nondimensiona
tip growth velocity and radius, respectively. The value of t
growth Peclet number is around 0.00172 for the tip of t
l.
FIG. 3. Isotherms around a growing crysta
~a! The vicinity of the crystal.~b! Close up
around the crystal.
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FIG. 4. Solid-liquid interfaces at different val
ues of undercooling:~a! D50.04, ~b! D50.02,
~c! D50.01, and~d! D50.005.
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downward growing branch. The convective effects that c
be seen in the shape of the isotherms are thus not the co
quence of the translation of the tip, but instead of the fl
motion. This observation is also supported by the fact t
the flow velocity below the crystal is larger than the t
growth velocity~a factor 6 higher at a distance 100 below t
downward growing tip!.

In Fig. 4 the results for four different undercoolings a
shown. The dashed and solid lines represent the solid-liq
interface without and with natural convection. The referen
length W was chosen to reflect the tip radius of the dow
ward growing branch, so that the nondimensional tip rad
was around 12. In the four casesD50.04, 0.02, 0.01, and
0.005, W was taken as 500d0 , 1000d0 , 1666.66d0, and
3333.33d0, respectively. Each case was simulated in time
produce a main downward branch that was approximatel
the same nondimensional length; 400–500. This choice,
gether with the choice of reference length in terms of act
tip radius, means that even though the actual size and
for growth is very different between the different cases,
cases show dendrites that are of a similar geometric c
plexity, in terms of the ratio between size and tip radii.

A general trend is that the velocity of the tip of the dow
ward growing branch increases due to the flow. The incre
becomes larger as the undercooling is reduced, due to
fact that the size of the crystal becomes larger, and ther
the natural convection is enhanced. The main flow in
vicinity of the crystal is directed upwards which results
that the flow enhances the heat transfer most at the do
ward growing branch of the crystal, and it is always th
branch that grows the fastest.

The shapes in Fig. 4~a!, for D50.04, were obtained at
time 1.283106. The nondimensional velocity and tip radiu
of the downward branch in the convecting case areV53.9
31024 andR514.75, respectively. It is seen that the dow
ward and the horizontal branches have grown 20–3
longer in the convecting case than in the nonconvect
n
se-
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id
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-
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o
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l
e

ll
-

se
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There is thus a clear influence on growth from convecti
For this case the Rayleigh number based on a dendrite
length l 5563, is Ral5 l 3Ra59.90.

Figure 4~b! shows the comparison between the crys
shapes with and without convection forD50.02, at the same
time, 1.643106, as was shown in Figs. 2 and 3. The t
velocity and radius of the downward growing convecti
branch is 2.8731024 and 12, respectively. The overall siz
Rayleigh number was here Ral527.8. The comparison be
tween the convecting and nonconvecting cases now sh
that convection has more than doubled the length of
downward and horizontal branches, leaving the upw
branch slightly shorter.

At D50.01@Fig. 4~c!#, taken at time 2.553106, this trend
is even more pronounced. The dendrite arm length Rayle
number here is Ral552.3, based on the actual length of th
lower arm l 5467. This increased value of the Rayleug
number clearly reflects the increased convective effects
the growth which are evident in Fig. 4~c!. The downward
and horizontal branches are even more enhanced, with
downward branch the longest. The tip speed and radiu
the downward branch are 1.731024 and 12.3, respectively
The upward growing branch almost coincides with the no
convecting one.

The largest difference between the convective and n
convective cases occurs for the lowest undercoolingD
50.005, shown at time 3.103106 in Fig. 4~d!. The tip ve-
locity and radius are 1.231024 and 10, respectively. The
overall size Rayleigh number is now Ral5132, based on the
lower arm lengthl 5400. This again confirms the increasin
effect of natural convection as the undercooling is decrea

As an example of the other extreme, where convect
becomes unimportant, the case withD50.08 ~not shown!
was computed. The convection gives slightly different
velocities for the branches, but the difference in relative
velocity is only 3.5% at time of 63105. The downward
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growing branch has reached abouty5420, and the velocity
and radius of the tip are 4.531024 and 26, respectively. The
overall size Rayleigh number is Ral50.185. Compared to
the case without convection, the relative difference in ve
cal position of the lower tip is less than 1%, and the conv
tive and nonconvective shapes are indistiguishable. Henc
this undercooling the effect of the thermal natural convect
on the crystal growth is negligible.

The time history for the growth velocity for the down
ward growing branch is interesting. In all cases without co
vection the growth does not reach a steady state. Thi
expected at these low undercoolings, since in the presenc
very slow growth, the convective effects due to the motion
the solidification front are largely absent. The thermal fie
will then evolve in time as pure diffusion from a localize
heat source. In two dimensions, as is well known, the
field is logarithmic, and a steady state is possible only a
the diffusion has reached the outer boundary. Provotaset al.
@26# investigated the scaling of this time dependent growth
undercoolings as low asD50.05. Both with and without
convection, there is an initial transient when the initial co
dition for temperature is equilibrated over a length sc
comparable to the size of the initial nucleus.

However, with convection the growth velocity soo
reaches a quasi-steady-state. With the natural convec
flow the diffusion of heat is balanced by the convective
moval of heat, and the disturbance of the temperature fie
confined within a region which for the higher Rayleigh num
bers starts to resemble a convective boundary layer of th
nesslRal

21/4.
With convection the time history of the tip downwar

growth is typically that, after an initial rapid growth, the t
speed drops to an almost constant value. This may typic
increase slightly at later times. This is due to the fact that
size of the crystal is continually increasing, and this cause
continued increase of the natural convection, but this i
minor effect as the growth velocity of the tip is increasi
very slowly.

For D50.04, the velocity is increasing at the time show
in Fig. 4~b!. However, the increase in speed is very slig
during the last 100 length units of growth, the speed of
downward growing tip increased only by 1.2%. Similarl
for D50.02 andD50.01, at the times shown in Figs. 4~c!
and 4~d!, respectively, the tip speeds have been decrea
but have just started to increse slightly. ForD50.005, at
time 3.103106 in Fig. 4~d!, the tip velocity has increased b
2% during the time required for growth over the last 1
length units. The steady state tip velocity is not stric
reached, but the change is very slow and can practically
interpreted as steady state. ForD50.08, as discussed abov
convection effects are negligible. Consequently no ste
state tip velocities were obtained for this undercooling.

The slow increase of growth velocity with crystal size
understandable as a consequence of an increasing flow s
around the tip, as the crystal grows in size. With a lar
crystal the velocity scale of the convective motion increas
The tip will thus experience an increased convective fl
which will give an enhanced heat transfer. Note that, if
tip had been so large that there had been well reso
boundary layers around it, the flow would be self-simil
and the local heat transfer at the tip would be independen
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the overall crystal size. Here, however, the tip region is v
small, and indeed there is no self similar boundary la
region at all. A reasonable conceptual model for the h
transfer at the tip would rather be a small object in a forc
flow, where the flow is driven by the convection on the de
drite size scale.

The flow also increases the growth of the horizon
branch. This branch has grown 87%, 83%, 81%, and 7
of the length of the downward growing branch forD
50.04,0.02,0.01, and 0.005, respectively. This difference
length is observed to slowly increase as time elapses,
cause the difference in velocities of these branches is
slowly increasing.

The flow is viscous for all values of the undercooling a
the main flow follows the solid-liquid interface, withou
separated flow regions. The vortex that was observed in
caseD50.02~Fig. 2! has, forD50.01 and 0.05, reached th
upper wall, and is developing into the overall circulation
the chamber. Still the temperature is undisturbed away fr
the plume and the crystal. Hence there are not yet any str
effects of the finite size of the chamber, and we do not exp
the results to be sensitive to a change in chamber size.

With convection the stability~selection! parameters
51/„PR/(d0 /W)… is 0.047–0.048, whered0 is the capillary
length andP5VR/2 is the growth Peclet number, whereV
andR are the nondimensional tip growth velocity and radiu
respectively. This value is more than twice the value of
experiments with SCN, and some of this difference is pro
ably due to that here the value of the anisotropy paramete
that was used is a bit high.

Figure 5 shows the growth Peclet numbersP for the simu-
lations as a function of the undercooling. In the graph,
dash-dotted and dashed lines are the growth Peclet num
according to an Ivantsov solution without convection in tw
and three dimensions, respectively. The squares are ex
mental results for SCN in a terrestrial enviroment found
Glicksman@4#. The most striking feature is that the grow
Peclet number increases with the undercooling in very m

FIG. 5. Growth Peclet number vs nondimensional undercooli
The solid line shows the present simulations; the dashed line sh
a 3D Ivantsov construction; squares are experimental results
Glicksman@4#; and the dash-dotted line shows a 2D Ivantsov co
struction.
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the same way for our simulations and the experiments,
spite the fact that the simulations are 2D.

The large difference between the 2D and 3D Ivants
curves in Fig. 5 are due to the logarithmic far field singul
ity in a 2D diffusion problem, which is absent in three d
mensions. However, with convection a finite length scale
the thermal field is established, and the heat transfer beco
independent of the state far from the crystal; this also ho
in the 2D case. There is a quantitative difference betw
simulation results and experimental results, but that is a c
stant factor, the slope of the curves agree quite well. T
indicates that the essential features of the convective eff
are similar in the experiments and the 2D simulation.

Some of the difference could also be due to the fact t
the assumed anisotropy valuee50.015 is a bit high for SCN.
Wheeleret al. @36# showed that the growth Peclet numb
for diffusion controlled growth increases with decreasi
values ofe.

Figure 6 shows the relation between a Nusselt number
the downward growing branch and the Rayleigh numb
The Nusselt number is based on the tip radius and the rel
of latent heat, which should be the relevant scales govern
the heat transfer around the tip. This gives an expressio
NuR5VR/D, where V and R are the nondimensional tip
growth speed and radius, as above. Using the argument
lined above in connection with the discussion of the tim
dependence of the growth, we expect the heat transfer aro
the tip to be governed by the flow caused by the ove
natural convection. This would give NuR'PeR

1/2, where PeR
5UR is a Peclet number based on the flow velocityU ~non-
dimensional! and the tip radius. This flow velocity is as
sumed to be driven by the overall convection, i.e.,U
'Ral

1/2/ l . This gives a relation between NuR and Ral accord-
ing to NuR( l /R)1/2'Ral

1/4.
This relation has been tested in Fig. 6. It is seen t

log10@NuR( l /R)1/2# varies linearly with log10(Ral), as ex-
pected, except for the lowest value of Ral corresponding to
D50.08, where we do not expect convection to be imp
tant. With this choice of parameters it is also clear that
switchover from convectively to diffusively controlle

FIG. 6. Relation between tip Nusselt number and overall R
leigh number. The solid line and squares show the present sim
tions; the dashed line is a fit to the data withD<0.04, giving the
relation NuR( l /R)1/250.555 Ral

1/4.79.
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growth occurs for Ral'1. A fit of a power law to the points
where convection dominates gives the result t
NuR( l /R)1/250.555 Ral

1/4.79, in reasonable agreement wit
the expected law. It is an attractive feature of this relat
that it involves both the tip radius and the overall leng
scale; however, in view of the limited parameter range t
was covered, we do not wish to overemphasize the sign
cance of this.

The preferred growth direction was also changed 45°
D50.02 andD50.005, i.e.,z0 was set to 45° in these two
simulations. These cases were compared to the corresp
ing cases with the same undercoolings andz050. Without
flow the results were of course independent of this variat
in z0, as expected; thus the initial transient was the sa
With flow the twoz0 values give different flow picture in the
vicinity of the crystal. Whenz0545° degrees there are tw
downward branches that are growing with 45° angles re
tive to the gravity vector. Between these branches the me
warm, but it is prevented from flowing upward by the cry
tal, and as a result this is almost a stagnant region. Still,
change in the flow field has only small effects on the grow
velocity of the downward branches. The tip velocity f
these downward branches is only marginally smaller than
tip velocity for the downward growing branch withz050°.
For both undercoolings the increase ofz0 resulted in less
than 1% relative change in tip velocity.

In the casesD50.005 andz0545°, the upward growing
branches grow with 60% of the velocity of the downwa
growing branches and their growth direction are 5° upstre
relative to the respective preferred growth direction. Mo
over, the tip shape of an upward growing branch is no lon
parabolic. The downstream side of the tip is less curv
even though the main flow follows the solid-liquid interfac
around the tip. Hence the flow has asymmetrically increa
the heat flux at this tip.

All cases above are for the terrestrial value of the gra
tation, but two simulations were also done with reduc
gravitation. ForD50.005, gravitation was reduced by fa
tors of 103 and 106. The results were that the crystal is st
affected by the natural convection in case of the 103 reduc-
tion, but unaffected for the 106 reduction. Still, for the 106

reduction, the size of the envelope enclosing the crystal
less than 200, and there might be some small convec
effects that appear at larger times.

V. CONCLUSION

Realistic parameter values for SCN and undercoolin
down to 0.12 K were used to simulate effects of natu
convection on crystal growth. The natural convection b
comes stronger and affects the crystal growth more as
undercooling decreases, due to the increase in size of
crystal with decreasing undercooling. For undercoolin
larger than 1.92 K the natural convection has only a sm
effect on the crystal growth, as expected from previous
periments. When the growth Peclet number for the simu
tions with natural convection are compared with results fr
terrestrial experiments, a similar dependency on underc
ing is observed, despite the fact that the simulations are
and the experiments are 3D.

With one preferred growth direction aligned with gravit

-
la-
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the downward growing branch is always the fastest grow
one. The growth of the horizontal branches are also increa
by the natural convection. The velocity of these branches
more than 75% of the velocity of the downward growin
branch, and the difference in growth velocity increases w
lower undercooling. This growth is faster than diffusio
dominated growth. On the other hand, the upward grow
branch grows with a lower velocity than in the case of d
fusion dominated growth.

When the preferred growth direction was set at a 4
angle from the vertical direction, the growth velocity of th
branches that grow downward was not affected; hence
growth velocity was the same as for a downward grow
branch, with the preferred direction aligned with gravity. T
branches that grow at 135° relative to gravity grow with 60
of the velocity of the downward growing branches. This d
pendency of the growth on the orientation relative to grav
is also observed in experiments, where the growth velo
for moderate undercooling is rapidly decreased as the gro
in
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direction exceeds a 110° angle with respect to the gra
vector.

In simulations with convection, the growth velocity of th
downward growing tip becomes almost constant, ove
modest range of crystal sizes. The growth was correlated
Rayleigh number based on overall crystal size. In this co
lation, the growth would depend both on the tip radius a
the size of the envelope of the crystal.

The stability parameters becomes about twice as large
in the experiments for cases with flow. With convection, t
stability parameter has a variation of 2% and this sm
variation does not correlate with the undercooling. The
fore, with convection, the stability parameter is independ
of the undercooling and the fluid flow for the range of u
dercooling used here.
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